Some good practices for research
with R

Ftienne Bacher
LISER

March 16, 2023

1/48

1. Validate our data with {validate}

4. Keep a clean session

2/48

https://github.com/data-cleaning/validate
https://rstudio.github.io/renv/
https://here.r-lib.org/

Validate our data with {validate}

3/48

Why?

Cleaning data can take hundreds or thousands of lines.

Sometimes we do some mistakes that can have big consequences.

41748

JOURMAL ARTICLE CORRECTED PROOF

Retraction of: Growing up in a Recession @

-

The Review of Economic Studies, rdac085, https://doi.org/10.1093/restud/rdac085
Published: 11 January 2023 Article history

This is a retraction to: The Review of Economic Studies, Volume 81, Issue 2, April 2014,
Pages 787-817, https://doi.org/10.1093/restud/rdt040

|:| PDF NN SplitView &€ Cite J Permissions 5 Share v

Issue Section: Retraction

This is a retraction of: Paola Giuliano, Antonio Spilimbergo, Growing up in a
Recession, The Review of Economic Studies, Volume 81, Issue 2, April 2014, Pages
787—817, https://doi.org/10.1093/restud/rdto40

The authors and editorial team are retracting this article because the original
findings cannot be replicated, likely as a result of an inadvertent coding error. While
the original codes and data sets are no longer available, new analysis with a markedly
similar data set does not support the original results.

5/48

Paper published in the JPE (error found in replication led by I14R):

Note on: Cooperative Property Rights and Development:

Evidence from Land Reform in El Salvador

Eduardo Montero®

University of Chicago
March 1, 2023
First and foremost, 1 want to thank Anders Kjelsrud, Andreas Kotsadam, and Ole Ro-

geberg for their careful and thoughtful replication of Montero (2z022). In their replication

efforts, documented in Kjelsrud et al. (2023), they uncover a data mistake which affects the

results reported in Table 5 and Figure 6 of Montero (2022). This table and figure had pre-

sented evidence that land reform cooperatives had lower earnings inequality compared to
haciendas. Once the data merging error is corrected, these results are no longer valid. Below
| discuss in greater detail the data merging error and, to motivate future research, present
an alternative, correlational analysis that explores whether collective ownership is associated

with lower inequality using more recent data.

6/48

https://i4replication.org/

Whatis {validate}?

{validate} is an R package whose goal is to ensure that our code has
produced the expected output.

It should be used on the final and on the intermediate datasets (basically
anytime we do some big modifications).

7148

How to use {validate}?

1. Define a series of expectations, or rules, with validator()

2. Pass our dataset through these rules with confront()

3. Check that all rules are respected.

8/48

Example

Let's take an example with some data:

1 head(my data)

I

A tibble: 6
country
<fct>
Afghanistan
Afghanistan
Afghanistan
Afghanistan
Afghanistan
Afghanistan

Ot phwWNER

x 7/

continent year lifeExp
<fct>

Asia
Asia
Asia
Asia
Asia
Asia

<int>

1952
1957
1962
1967
1972
1977

<dbl> <int>
28.8 8425333
30.3 9240934
32.0 10267083
34.0 11537966
36.1 13079460
38.4 14880372

pop gdpPercap

<dbl>
779.
821.
853.
836.
740.
786.

iso
<chr>
AFG
AFG
AFG
AFG
AFG
AFG

9/48

1. Define a series of expectations, or rules, with validator():

1 library(validate) O
p

3 rules <- validator(

4 # Ensure that all ISO-3 codes have 3 letters

5 field length(iso, n = 3),

6

7 # Ensure that there are no duplicated combination of 1so-year
8 is unique(iso, year),

9
10 # Ensure that year doesn't have any missing values
11 lis.na(year)
12)

10/48

2. Pass our dataset through these rules with confront():

1 x <- confront(my_data, rules) O
2 X <- summary(x)
3
4 X
name items passes fails nNA error warning expression
1 V1 1704 1704 © O FALSE FALSE field length(iso, n = 3)
2 V2 1704 1704 © O FALSE FALSE is_unique(iso, year)
3 V3 1704 1704 © O FALSE FALSE lis.na(year)

11/48

3. Check that all rules are respected (or generate an error if there's a
failing test):

1 stopifnot(unique(x$fails) == 0) 0

12748

Writing rules can be tedious, for example if we have a list of variables that
should be positive (GDP, population, etc.).

Instead of writing varl >= 0, var2 >= 9, ..., we can use var_group():

1 rules <- validator(O

2 positive vars := var_group(lifeExp, pop, gdpPercap),

3 positive vars >= 0

4)

5

6 x <- confront(my_data, rules)

7 X <- summary(x)

8

9 head(x)

name items passes fails nNA error warning expression
1V2.1 1704 1704 © O FALSE FALSE lifeExp - @ >= -1e-08
2 V2.2 1704 1704 (%] © FALSE FALSE pop - @ >= -1e-08
3 V2.3 1704 1704 %) © FALSE FALSE gdpPercap - 0 >= -1e-08

13/48

There are a lot of other helpers:

e in_range(): useful for e.g percentages
e field format() for regular expressions

e is linear_sequence(): useful to check if there are some gaps in time
series

e many others...

See more details in the The Data Validation Cookbook.

14 /48

https://data-cleaning.github.io/validate/

Make our R environment
reproducible with {renv}

15748

Packagesin R

Packages make our life simpler by not having to reinvent the wheel.

But packages evolve! Between two versions of a same package:

e functions can be removed or renamed,;
e function outputs can change in terms of results or display;

e function arguments can be moved, removed or renamed.

Moreover, packages can disappear if they are not supported anymore.

16 /48

Personal experience

| did my Master’s thesis with R using ~30 packages in total.

Two months later, | couldn’t run my code anymore because a package |
used to extract some results slightly changed one of its arguments.

= Two lessons:

1. choose our packages wisely: better to use popular and actively
developed packages;

2. use some tools to keep the version of the packages we used.

17 /48

Packagesin R

Even the most used packages in R can change a lot over the years (e.g
tidyverse).

It is our responsibility to make sure that our scripts are reproducible. If |
take our script 4 years later, | should be able to runit.

Problem: how to deal with evolving packages?

18 /48

Solution

Take a snapshot of packages version using {renv}.

|dea: create a lockfile that contains the version of all the packages we used
in a project, as well as their dependencies.

When we give the project to someone else, they will be able to restore it
with the exact same package versions.

19/48

How does it work?

1. Initialize {renv} whenever we want with init();

2. Work as usual;

3. Run snapshot () from time to time to update the lockfile;

4. If we come back to this project later, or if we share this project, run
restore() to get the packages as they were when we used them.

20/48

Example

Let's take an example with the gapminder dataset. We import two

packages, gapminder and countrycode:

library(gapminder)
library(countrycode)

1
2
3
4 gapminder$iso <- countrycode(gapminder$country, "country.name", "iso3c")
5
6

head(gapminder)
A tibble: 6 x 7
country continent year lifeExp pop gdpPercap iso
<fct> <fct> <int> <dbl> <int> <dbl> <chr>
1 Afghanistan Asia 1952 28.8 8425333 779. AFG
2 Afghanistan Asia 1957 30.3 9240934 821. AFG
3 Afghanistan Asia 1962 32.0 10267083 853. AFG
4 Afghanistan Asia 1967 34.0 11537966 836. AFG
5 Afghanistan Asia 1972 36.1 13079460 740. AFG
6 Afghanistan Asia 1977 38.4 14880372 786. AFG

21/48

1. Initialize {renv} whenever we want with init():

1 renv::init() O
1 * Initializing project ... B
2 * Discovering package dependencies ... Done!

3 * Copying packages into the cache ... Done!

4 The following package(s) will be updated in the lockfile:

5

6 # CRAN ===============================

7 - R6 [* -> 2.5.1]

8 - base64denc [* -> 0.1-3]

9 - bslib [* -> 0.4.2]

10 - cachem [* -> 1.0.6]

11 - cli [* -> 3.5.0]

12 - countrycode [* -> 1.4.0]
13 - digest [* -> 0.6.31]
14 - ellipsis [* -> 0.3.2]

15 - evaluate [* -> 0.19]

16 - fansi [* -> 1.0.3]
17 - fastmap [* -> 1.1.0]

22 /48

This will create;

e 3 file called renv.lock

e a folder called renv

- don't touch these files!

23 /48

2. Work as usual. Let's import another package:

1 library(dplyr) u

‘ 1 Error in library(dplyr) : there is no package called ‘dplyr’ O

Hum... weird, dplyr was installed on my laptop.

24 /48

{renv} creates a sort of “local library” in our project, so we need to reinstall
dplyr first:

‘ 1 install.packages("dplyr")

‘ 1 library(dplyr)

25/48

Now that we imported a new package, let's see the status of {renv}:

‘ 1 renv::status() O
1 The following package(s) are installed but not recorded in the lockfile: O
2 _
3 withr [2.5.0]
4 dplyr [1.0.10]
5 generics [0.1.3]
6 tidyselect [1.2.0]
7
8 Use "renv::snapshot() to add these packages to your lockfile.

26 /48

3. Run snapshot () from time to time to update the lockfile;

1 renv::snapshot() O
1 The following package(s) will be updated in the lockfile: O
2

4 - dplyr [* -> 1.0.10]

5 - generics [* -> 0.1.3]

6 - tidyselect [* -> 1.2.0]

7 - withr [* -> 2.5.0]

8

9 Do you want to proceed? [y/N]: Y
10 * Lockfile written to 'C:/Users/etienne/Desktop/Divers/good-practices/renv.

27148

Good to know

{renv} is not a panacea for reproducibility.

If we use some packages that depend on external software (e.g RSelenium
uses Java), {renv} cannot install this software for us.

Learn more about {renv} capabilities and limitations on the package’s
website.

28 /48

https://rstudio.github.io/renv

Make our paths reproducible with
{here}

29/48

Paths

Absolute path: path that is specific to our computer because it starts at
the root of a computer.

Ex: “C:/Users/etienne/Desktop/myproject/mydata/WDI"

Relative path: path that is specific to a project because it starts at the root
of the project.

Ex: “mydata/WDI”

30/48

Relative paths in R

Use the package {here}:

e to know the working directory:

‘ 1 here::here())
‘[1] "C:/Users/etienne/Desktop/Divers/good-practices” ‘
e to use some data, script, etc.:
O

1 mydata <- read.csv(here::here("data/WDI/gapminder.csv"))

31/48

Relative paths in R

The only path in my script is “data/WDI/gapminder.csv”.

Therefore, if | give the folder “good-practices” to someone else:

e the output of here: :here() will change because the location of the
folder on the computer changed.

e pbut my code will still run because the path to the data inside the folder
didn't change.

32/48

Relative paths in R

More advantages:

e {here} will also work if we open the script outside of an RStudio
project

e {here} will work on all operating systems (e.g no paths problems
because of Windows or Mac).

Get more info on {here} on the package’s website.

33/48

https://here.r-lib.org/

Keep a clean session

34 /48

Remove all objects

Last but not least: how do we ensure our code will run in a fresh session on
another laptop?

If you already use rm(1list = 1s()) at the beginning of your script...

... you're wrong

35/48

Problem

What does rm(list = 1s()) do?

e rm(): remove a list of objects from the environment

e 1s(): list all objects in the environment

Sorm(list = 1s()) removes all the objects from the environment:
datasets, variables, etc.

What about loaded packages? What about options set with options()?

36 /48

Problem

rm(list = 1s()) does NOT create a fresh R session. Try it yourself:

1. load any package, e.g dplyr
2.useit, e.g filter(iris, Species == "setosa")
3.run rm(list = 1s())

4. try again filter(iris, Species == "setosa")

This will still work, meaning that the package was not unloaded.

37148

Solution

Instead of using rm(1list = 1s()), you should completely restart the
session to be sure your code can run in a fresh session:

e Session > Restart R;
e or Ctrl + Shift + F10;

e or rstudioapi::restartSession().

38/48

Bonus: version control

39/48

If this is familiar...

"FINAL doc

A 7
FINAL _rev.6.COMMENTS. d FINAL _rev.8.commenteS.
e o CORRECTIONS. doc

JORGE CHAM B 2012

3
FINAL_rev.(8.comments?. EINAL_rev.22. comm;nfs‘-f‘?.
corrections?.MORE.30.doc corrections.10. #@%%WHYDID

WWW.PHDCOMICS.COM

... you should maye) use version control!

40/ 48

Version control

Most famous version control tool: Git.

Difference between Git and Github:

e @Git; core tool

e Github: web interface that makes it much easier to use Git

41 /48

https://git-scm.com/

Version control

ldea: you are able to go back to your project at any point in time.

Workflow:

e put your project on a repository

e write code, write drafts, etc.

e once in a while (at the end of the day, or after a big coding session),
commit and push your changes to the repository

e the repository keeps track of what has changed and allows you to go
back to your code at any point in time.

42 /48

Personal example

- Commits on Jan 18, 2023

move the creation of all combinations, clarify a line

'{-j'.:\ etiennebacher committed on Jan 18

- Commits on Jan 17, 2023

fix duplicated names for terrorism, add check for this in validate()

('F_\ etiennebacher committed on Jan 17

fix some checks
'{-j'.:\ etiennebacher committed on Jan 17

add some checks for own computations of instrument relative to ESS in...

'{-I-'.:\ etiennebacher committed on Jan 17

* ESS: remove interviews that happen more than 1.5 years after beginning

'{-j'.:\ etiennebacher committed on Jan 17

- Commits on Jan 16, 2023

wrong code but useful to keep

'(-j._\ etiennebacher committed on Jan 16

76b4aae

5223aa8

Sba7e7c

626367

6afa541

d574dad

<

O

<>

<

<

O

43 /48

Personal example

- Commits on Jan 18, 2023

move the creation of all combinations, clarify a line

i8] 76b4age <Y
'(':\ etiennebacher committed on Jan 18
0- Commits on Jan 17, 2023
fix duplicated names for terrorism, add check for this in validate() O 5333220 e
'(':\ etiennebacher committed on Jan 17
fix some checks [—[;] Sha7ETc O
‘E\ etiennebacher committed on Jan 17
add some checks for own computations of instrument relative to ESS in... n F6526367 o
"E\ etiennebacher committed on Jan 17
* ESS: remove interviews that happen more than 1.5 years after beginning 0 64541 O
'(':\ etiennebacher committed on Jan 17
0- Commits on Jan 16, 2023
wrong code but useful to keep O 4574dad e

'(':\ etiennebacher committed on Jan 16

Commits | made: important to add a useful message (unlike some commits
here)

44 1 48

Personal example

- Commits on Jan 18, 2023

move the creation of all combinations, clarify a line

i8] 76b4age <Y
'(:\ etiennebacher committed on Jan 18
0- Commits on Jan 17, 2023
fix duplicated names for terrorism, add check for this in validate() O 5333220 e
'(;\ etiennebacher committed on Jan 17
fix some checks [—[;] Sha7ETc O
'(:\ etiennebacher committed on Jan 17
add some checks for own computations of instrument relative to ESS in... n F6526367 o
'(:\ etiennebacher committed on Jan 17
* ESS: remove interviews that happen more than 1.5 years after beginning 0 64541 O
'(:\ etiennebacher committed on Jan 17
0- Commits on Jan 16, 2023
wrong code but useful to keep O 4574dad e

'(’_\ etiennebacher committed on Jan 16

Browse the repository when these commits were made (aka time-travel
machine).

45/48

ersonal example

~

.z

45 EEEED Scripts/treat-data.R [LJ

@@ -225,7 +225,9 @@ for (i in unique(ess_total%iso)) {
x/sum(tmp)*188
Il
if (is.null({result)}) result <- NA

attitudes_raw[nrow(attitudes_raw) + 1, "iso"] <- 1

attitudes_raw[nrow(attitudes_raw), "year"] <- j
attitudes_raw[nrow(attitudes_raw), "measure"] <- k
attitudes_raw[nrow(attitudes_raw), "walue"] <- result

@2 -1682,28 +1684,6 @@ tmp_lag <- total base %>%

total_base <- left_join(total_base, tmp_lag, by = c("iso_d", "year", to_lag, to_lag2))

Complete the dataset with all origin-destination-year
total_base <- total_base %%

origin-destination, time-invariant variables

group_by(origin, destination) %>%

fill(iso_o, iso_d, contig, comlang_ethno, comlang off, colony,
dist, log_dist, diasp_2081, log_diasp_2681, oecd,
continent_o,
.direction = "updown") %>%

ungroup() %>%

destination-year variables

group_by(destination, year) %%

fill({contains("gdp_ppp"), contains("pop"”), contains("n_"), contains("attack"),
contains("mig_"), general_issue, political_participation,
labour_market_mobility, education, family_reunion, permanent_residence,
citizenship, starts_with("state_of"},
.direction = "updown") %>%

ungroup()

¥/ sum(tmp)*168

111

if (is.null({result)) result <- NA
+ attitudes_raw[nrow(attitudes_raw) + 1, "iso"] <- i # need nrow + 1 only here
+ # because it updates
+ # nrow for the next lines

attitudes_raw[nrow(attitudes_raw), "year"] <- j
attitudes_raw[nrow(attitudes_raw), "measure”] <- k
attitudes_raw[nrow(attitudes_raw), "wvalue"] <- result

total_base <- left_join(total_base, tmp_lag, by = c{"iso_d", "year", to_lag, to_lag?))

46 /48

Version control

Git & Github are also very useful for collaboration (if everyone knows how
to use it). It is also possible to link Overleaf and Github.

But not easy to learn and takes time to be efficient (maybe a future
training?)

Great resource for Git + Github + R: https://happygitwithr.com

47 /48

https://happygitwithr.com/

Thanks!

Source code for slides and examples:

https://github.com/etiennebacher/good-practices

Comments, typos, etc.:

https://github.com/etiennebacher/good-practices/issues

48 /48

https://github.com/etiennebacher/good-practices
https://github.com/etiennebacher/good-practices/issues

