
Some good practices for research
with R

Etienne Bacher
LISER

March 16, 2023

1 / 48

1. Validate our data with

2. Make our R environment reproducible with

3. Make our paths reproducible with

4. Keep a clean session

{validate}

{renv}

{here}

2 / 48

https://github.com/data-cleaning/validate
https://rstudio.github.io/renv/
https://here.r-lib.org/

Validate our data with {validate}

3 / 48

Why?

Cleaning data can take hundreds or thousands of lines.

Sometimes we do some mistakes that can have big consequences.

4 / 48

5 / 48

Paper published in the JPE (error found in replication led by):I4R

6 / 48

https://i4replication.org/

What is {validate}?

{validate} is an R package whose goal is to ensure that our code has

produced the expected output.

It should be used on the final and on the intermediate datasets (basically

anytime we do some big modifications).

7 / 48

How to use {validate}?

1. Define a series of expectations, or rules, with validator()

2. Pass our dataset through these rules with confront()

3. Check that all rules are respected.

8 / 48

Example

Let’s take an example with some data:

head(my_data)1

A tibble: 6 × 7
 country continent year lifeExp pop gdpPercap iso
 <fct> <fct> <int> <dbl> <int> <dbl> <chr>
1 Afghanistan Asia 1952 28.8 8425333 779. AFG
2 Afghanistan Asia 1957 30.3 9240934 821. AFG
3 Afghanistan Asia 1962 32.0 10267083 853. AFG
4 Afghanistan Asia 1967 34.0 11537966 836. AFG
5 Afghanistan Asia 1972 36.1 13079460 740. AFG
6 Afghanistan Asia 1977 38.4 14880372 786. AFG

9 / 48

1. Define a series of expectations, or rules, with validator():

library(validate)1
2

rules <- validator(3
 # Ensure that all ISO-3 codes have 3 letters4
 field_length(iso, n = 3),5
 6
 # Ensure that there are no duplicated combination of iso-year7
 is_unique(iso, year),8
 9
 # Ensure that year doesn't have any missing values10
 !is.na(year)11
)12

10 / 48

2. Pass our dataset through these rules with confront():

x <- confront(my_data, rules) 1
x <- summary(x) 2

3
x4

 name items passes fails nNA error warning expression
1 V1 1704 1704 0 0 FALSE FALSE field_length(iso, n = 3)
2 V2 1704 1704 0 0 FALSE FALSE is_unique(iso, year)
3 V3 1704 1704 0 0 FALSE FALSE !is.na(year)

11 / 48

3. Check that all rules are respected (or generate an error if there’s a

failing test):

stopifnot(unique(x$fails) == 0)1

12 / 48

Writing rules can be tedious, for example if we have a list of variables that

should be positive (GDP, population, etc.).

Instead of writing var1 >= 0, var2 >= 0, …, we can use var_group():

rules <- validator(1
 positive_vars := var_group(lifeExp, pop, gdpPercap),2
 positive_vars >= 03
)4

5
x <- confront(my_data, rules) 6
x <- summary(x) 7

8
head(x)9

 name items passes fails nNA error warning expression
1 V2.1 1704 1704 0 0 FALSE FALSE lifeExp - 0 >= -1e-08
2 V2.2 1704 1704 0 0 FALSE FALSE pop - 0 >= -1e-08
3 V2.3 1704 1704 0 0 FALSE FALSE gdpPercap - 0 >= -1e-08

13 / 48

There are a lot of other helpers:

in_range(): useful for e.g percentages

field_format() for regular expressions

is_linear_sequence(): useful to check if there are some gaps in time

series

many others…

See more details in the .The Data Validation Cookbook

14 / 48

https://data-cleaning.github.io/validate/

Make our R environment
reproducible with {renv}

15 / 48

Packages in R

Packages make our life simpler by not having to reinvent the wheel.

But packages evolve! Between two versions of a same package:

functions can be removed or renamed;

function outputs can change in terms of results or display;

function arguments can be moved, removed or renamed.

Moreover, packages can disappear if they are not supported anymore.

16 / 48

Personal experience

I did my Master’s thesis with R using ~30 packages in total.

Two months later, I couldn’t run my code anymore because a package I

used to extract some results slightly changed one of its arguments.

 Two lessons:

1. choose our packages wisely: better to use popular and actively

developed packages;

2. use some tools to keep the version of the packages we used.

17 / 48

Packages in R

Even the most used packages in R can change a lot over the years (e.g

tidyverse).

It is our responsibility to make sure that our scripts are reproducible. If I

take our script 4 years later, I should be able to run it.

Problem: how to deal with evolving packages?

18 / 48

Solution

Take a snapshot of packages version using {renv}.

Idea: create a lockfile that contains the version of all the packages we used

in a project, as well as their dependencies.

When we give the project to someone else, they will be able to restore it

with the exact same package versions.

19 / 48

How does it work?

1. Initialize {renv} whenever we want with init();

2. Work as usual;

3. Run snapshot() from time to time to update the lockfile;

4. If we come back to this project later, or if we share this project, run

restore() to get the packages as they were when we used them.

20 / 48

Example
Let’s take an example with the gapminder dataset. We import two

packages, gapminder and countrycode:

library(gapminder)1
library(countrycode)2

3
gapminder$iso <- countrycode(gapminder$country, "country.name", "iso3c")4

5
head(gapminder)6

A tibble: 6 × 7
 country continent year lifeExp pop gdpPercap iso
 <fct> <fct> <int> <dbl> <int> <dbl> <chr>
1 Afghanistan Asia 1952 28.8 8425333 779. AFG
2 Afghanistan Asia 1957 30.3 9240934 821. AFG
3 Afghanistan Asia 1962 32.0 10267083 853. AFG
4 Afghanistan Asia 1967 34.0 11537966 836. AFG
5 Afghanistan Asia 1972 36.1 13079460 740. AFG
6 Afghanistan Asia 1977 38.4 14880372 786. AFG

21 / 48

1. Initialize {renv} whenever we want with init():

renv::init()1

* Initializing project ...1
* Discovering package dependencies ... Done!2
* Copying packages into the cache ... Done!3
The following package(s) will be updated in the lockfile:4

5
CRAN ===============================6
- R6 [* -> 2.5.1]7
- base64enc [* -> 0.1-3]8
- bslib [* -> 0.4.2]9
- cachem [* -> 1.0.6]10
- cli [* -> 3.5.0]11
- countrycode [* -> 1.4.0]12
- digest [* -> 0.6.31]13
- ellipsis [* -> 0.3.2]14
- evaluate [* -> 0.19]15
- fansi [* -> 1.0.3]16
- fastmap [* -> 1.1.0]17

22 / 48

This will create:

a file called renv.lock

a folder called renv

 don’t touch these files!

23 / 48

2. Work as usual. Let’s import another package:

Hum… weird, dplyr was installed on my laptop.

library(dplyr)1

Error in library(dplyr) : there is no package called ‘dplyr’1

24 / 48

{renv} creates a sort of “local library” in our project, so we need to reinstall

dplyr first:

install.packages("dplyr")1

library(dplyr)1

25 / 48

Now that we imported a new package, let’s see the status of {renv}:

renv::status()1

The following package(s) are installed but not recorded in the lockfile:1
 _2
 withr [2.5.0]3
 dplyr [1.0.10]4
 generics [0.1.3]5
 tidyselect [1.2.0]6

7
Use `renv::snapshot()` to add these packages to your lockfile.8

26 / 48

3. Run snapshot() from time to time to update the lockfile;

renv::snapshot()1

The following package(s) will be updated in the lockfile:1
2

CRAN ===============================3
- dplyr [* -> 1.0.10]4
- generics [* -> 0.1.3]5
- tidyselect [* -> 1.2.0]6
- withr [* -> 2.5.0]7

8
Do you want to proceed? [y/N]: Y9
* Lockfile written to 'C:/Users/etienne/Desktop/Divers/good-practices/renv.10

27 / 48

Good to know

{renv} is not a panacea for reproducibility.

If we use some packages that depend on external software (e.g RSelenium
uses Java), {renv} cannot install this software for us.

Learn more about {renv} capabilities and limitations on

.

the package’s

website

28 / 48

https://rstudio.github.io/renv

Make our paths reproducible with
{here}

29 / 48

Paths

Absolute path: path that is specific to our computer because it starts at

the root of a computer.

Ex: “C:/Users/etienne/Desktop/myproject/mydata/WDI”

Relative path: path that is specific to a project because it starts at the root

of the project.

Ex: “mydata/WDI”

30 / 48

Relative paths in R

Use the package {here}:

to know the working directory:

to use some data, script, etc.:

here::here()1

[1] "C:/Users/etienne/Desktop/Divers/good-practices"

mydata <- read.csv(here::here("data/WDI/gapminder.csv"))1

31 / 48

Relative paths in R

The only path in my script is “data/WDI/gapminder.csv”.

Therefore, if I give the folder “good-practices” to someone else:

the output of here::here() will change because the location of the

folder on the computer changed.

but my code will still run because the path to the data inside the folder

didn’t change.

32 / 48

Relative paths in R

More advantages:

{here} will also work if we open the script outside of an RStudio

project

{here} will work on all operating systems (e.g no paths problems

because of Windows or Mac).

Get more info on {here} on .the package’s website

33 / 48

https://here.r-lib.org/

Keep a clean session

34 / 48

Remove all objects

Last but not least: how do we ensure our code will run in a fresh session on

another laptop?

If you already use rm(list = ls()) at the beginning of your script…

… you’re wrong

35 / 48

Problem

What does rm(list = ls()) do?

rm(): remove a list of objects from the environment

ls(): list all objects in the environment

So rm(list = ls()) removes all the objects from the environment:

datasets, variables, etc.

What about loaded packages? What about options set with options()?

36 / 48

Problem

rm(list = ls()) does NOT create a fresh R session. Try it yourself:

1. load any package, e.g dplyr

2. use it, e.g filter(iris, Species == "setosa")

3. run rm(list = ls())

4. try again filter(iris, Species == "setosa")

This will still work, meaning that the package was not unloaded.

37 / 48

Solution

Instead of using rm(list = ls()), you should completely restart the

session to be sure your code can run in a fresh session:

Session > Restart R;

or Ctrl + Shift + F10;

or rstudioapi::restartSession().

38 / 48

Bonus: version control

39 / 48

If this is familiar…

… you should (maybe) use version control!

40 / 48

Version control

Most famous version control tool: .

Difference between Git and Github:

Git: core tool

Github: web interface that makes it much easier to use Git

Git

41 / 48

https://git-scm.com/

Version control

Idea: you are able to go back to your project at any point in time.

Workflow:

put your project on a repository

write code, write drafts, etc.

once in a while (at the end of the day, or after a big coding session),

commit and push your changes to the repository

the repository keeps track of what has changed and allows you to go

back to your code at any point in time.

42 / 48

Personal example

43 / 48

Personal example

Commits I made: important to add a useful message (unlike some commits

here)

44 / 48

Personal example

Browse the repository when these commits were made (aka time-travel

machine).

45 / 48

Personal example

46 / 48

Version control

Git & Github are also very useful for collaboration (if everyone knows how

to use it). It is also possible to link Overleaf and Github.

But not easy to learn and takes time to be efficient (maybe a future

training?)

Great resource for Git + Github + R: https://happygitwithr.com

47 / 48

https://happygitwithr.com/

Thanks!

Source code for slides and examples:

Comments, typos, etc.:

https://github.com/etiennebacher/good-practices

https://github.com/etiennebacher/good-practices/issues

48 / 48

https://github.com/etiennebacher/good-practices
https://github.com/etiennebacher/good-practices/issues

